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Abstract. In this work, upper estimates for norm of an integral operator with Oinarov kernel in
weighted Lebesgue spaces are obtained. The results given are very important in the study of the
oscillation and non-oscillation properties of solutions of differential equations, as well as spectral
properties.

1. Introduction

Let (a,b) ⊂ R and u,v be weight functions in (a,b) , i.e., positive measurable
functions defined a.e. in (a,b) . Let p,q > 1 and introduce weighted Lebesgue spaces

Lp,v = { f : ‖ f‖p
p,v :=

∫ b

a
| f (t)|pv(t)dt < ∞}

and similarly Lq,u. In this paper we consider the integral operator

H : Lp,v → Lq,u, (H f )(x) :=
∫ x

a
k(x,t) f (t)dt, (1.1)

where k(x, t) is called kernel of the operator, which is nonnegative measurable function
defined a.e. in (a,b)× (a,b).

The problem of boundedness of this operator in Lebesgue spaces began to be stud-
ied in the last decades of the last century. Let us now give some scientific conclusions
concerning operators of this type. For example, F. J. Martin-Reyes and E. Sawyer [11]
and V. D. Stepanov [14] considered the Riemann-Liouville fractional integral operator,

i.e., (1.1) of the kernel k(x,t) = (x−t)α−1

Γ(α) , α � 1 and Γ(α) is the Gamma function.
S. Bloom and R. Kerman [2] and R. Oinarov [12, 13] gave equivalent conditions for
boundedness of (1.1) for kernels k(x,t) is a continuous nonnegative function increasing
in the first argument, decreasing in the second argument and satisfying the condition:
there exists a number h � 1 such that

k(x,s) � h(k(x,t)+ k(t,s))
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for all a < s � t � x < b. Functions k(x,t) satisfying the above conditions are also
called Oinarov’s kernel. In the works on this topic, the main focus was on finding
equivalent conditions for the boundedness of the operator in (1.1), where estimates for
the operator norm are very rare. There are some works in which the main purpose is to
study another object, but the authors also gave estimates for the norm of the operator
(1.1), see e.g. [3], [4], [6] and [7]. However, in the theory of differential equations it is
very important to obtain the exact estimates.

Recently, in 2021 A. Kalybay and A. Baiarystanov [5] were obtained upper and
lower estimates for the norm of the operator (1.1) in the case 1 < p � q < ∞ as

A � ‖H‖Lp,v→Lq,u � (h+1)3p
1
q (p′)

1
p′ A, (1.2)

where A = max{A1,A2} and

A1 = sup
a<x<b

(∫ b

x
kq(t,x)u(t)dt

) 1
q
(∫ x

a
v1−p′(t)dt

) 1
p′

,

A2 = sup
a<x<b

(∫ b

x
u(t)dt

) 1
q
(∫ x

a
kp′(x,t)v1−p′(t)dt

) 1
p′

.

But, the calculations show that for certain values of p and q it is possible to obtain a
better estimate.

If we look at the right hand side of (1.2) we see two expressions (h + 1)3 and

p
1
q (p′)

1
p′ , one related to h and the other to the powers p and q , i.e., a change in one

expression does not affect the other. In this paper, we give another upper estimates for
the operator norm, where in the expression these parameters are continuously dependent
each other, which is useful to find a better estimate for the operator norm for some
choice of p and q , see Example 2.3.

The paper is organized as follows. The first section is introduction. In the second
section we give the main results. The proofs of the results are given in the third section.

2. Main results

The first result of this paper states that the upper estimate for the operator norm
(2.1) can be given by a solution of some nonlinear equation. Unfortunately, such equa-
tions cannot always be solved analytically. However, now the time when computer
technologies are advancing, such equations can be solved approximately.

The first result of the paper reads:

THEOREM 2.1. Let 1 < p � q < ∞ . Then the norm of the integral operator in
(1.1) satisfies

A � ‖H‖ � C, (2.1)

where C is a positive solution of the equation

Cq′ −hq
1

q−1 (q′)
1

q−1 A
1

q−1C = hq
1

q−1 (p′)
q′
p′ Aq′ (2.2)
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and A = max{A1,A2} .

REMARK 2.2. Equation (2.2) has a unique positive solution, since the function

h(x) =
xq′

q
1

q−1 (p′)
q′
p′ Aq′ +q

1
q−1 (q′)

1
q−1 A

1
q−1 x

is continuous and monotone increasing function of x in the half line (0,∞) , h(0) = 0
and h(∞) = ∞ .

EXAMPLE 2.3. Let 1 < p � q = 2 and h � 1. Then Equation (2.2) and it’s posi-
tive solution take the forms

C2−4AhC = 2h(p′)
2
p′ A2

and

C =
(

2h+
√

4h2 +2h(p′)
2
p′
)

A,

respectively. Then corresponding estimates take the form

A � ‖H‖ �
(

2h+
√

4h2 +2h(p′)
2
p′
)

A.

REMARK 2.4. Similarly, the above results can be written for so-called conjugate
Hardy operator

H∗ : Lp,v → Lq,u, (H∗ f )(x) :=
∫ b

x
k(t,x)g(t)dt (2.3)

to the Hardy operator, i.e., the following estimates hold true for H∗ :

A∗ � ‖H∗‖ � C,

where C is a positive solution of (2.2) and A∗ = max{A∗
1,A

∗
2}, where

A∗
1 = sup

a<x<b

(∫ x

a
kp(x,t)u(t)dt

) 1
p
(∫ x

a
v1−p′(t)dt

) 1
p′

,

A∗
2 = sup

a<x<b

(∫ x

a
u(t)dt

) 1
p
(∫ b

x
kp′(t,x)v1−p′(t)dt

) 1
p′

.

Our next result reads as:

THEOREM 2.5. Let 1 < p � q < ∞ . Then the norm of the integral operator in
(1.1) satisfies

A � ‖H‖ � ehq−1qq′A, (2.4)

where A = max{A1,A2} .
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3. Proofs

In this section we present proofs of the main theorems.

Proof of Theorem 2.1. Here we first assume that the integral operator (1.1) is
bounded, that is, A < ∞. Then it can be described in the form of this inequality

(∫ b

a

(∫ x

a
k(x,t) f (t)dt

)q

u(x)dx

) 1
q

� C

(∫ b

a
f p(x)v(x)dx

) 1
p

,

which is so-called generalized Hardy inequality, where C = ‖H‖Lp,v→Lq,u is the best
constant (the smallest constant in which the inequality holds) of the inequality.

We do not give a lower estimate for the norm, which is proved without change, as
in Oinarov’s theorem [9, Theorem 2.10] or in [5, Theorem 1]. Let denote

I =
∫ b

a

(∫ x

a
k(x,t) f (t)dt

)q

u(x)dx,

then consequently using Fubini’s theorem and Hölder’s inequality we get

I = q
∫ b

a

(∫ x

a
k(x,t) f (t)

(∫ t

a
k(x,s) f (s)ds

)q−1

dt

)
u(x)dx

= q
∫ b

a
f (t)

(∫ b

t
k(x,t)u(x)

(∫ t

a
k(x,s) f (s)ds

)q−1

dx

)
dt

� q‖ f‖p,v

⎛
⎝∫ b

a
v1−p′(t)

(∫ b

t
k(x,t)u(x)

(∫ t

a
k(x,s) f (s)ds

)q−1

dx

)p′

dt

⎞
⎠

1/p′

= q‖ f‖p,vJ
1/p′ . (3.1)

We now proceed to the proof by estimating J . To do this, we estimate its inner
integral separately. Using Hölder’s inequality with exponents [q]

q−1 and [q]
1−{q} we have

∫ b

t
k(x,t)u(x)

(∫ t

a
k(x,s) f (s)ds

)q−1

dx

=
∫ b

t

[
k{q}(x,t)u(x)

(∫ t

a
k(x,s) f (s)ds

)[q]
] q−1

[q]

× [kq(x,t)u(x)]
1−{q}

[q] dx

�
(∫ b

t
k{q}(x, t)u(x)

(∫ t

a
k(x,s) f (s)ds

)[q]

dx

) q−1
[q] (∫ b

t
kq(x,t)u(x)dx

) 1−{q}
[q]

.
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We now derive the following estimate from the condition of the Oinarov kernel and
then Newton’s binomial formulae

� hq−1

(∫ b

t
k{q}(x,t)u(x)

(
k(x,t)

∫ t

a
f (s)ds+

∫ t

a
k(t,s) f (s)ds

)[q]

dx

) q−1
[q]

×
(∫ b

t
kq(x,t)u(x)dx

) 1−{q}
[q]

= hq−1

(∫ b

t
k{q}(x,t)u(x)

(
[q]

∑
n=0

Cn
[q]k

n(x, t)
(∫ t

a
f (s)ds

)n

×
(∫ t

a
k(t,s) f (s)ds

)[q]−n
)

dx

) q−1
[q] (∫ b

t
kq(x,t)u(x)dx

) 1−{q}
[q]

= hq−1

(
[q]

∑
n=0

Cn
[q]

(∫ b

t
k{q}+n(x,t)u(x)dx

)(∫ t

a
f (s)ds

)n

×
(∫ t

a
k(t,s) f (s)ds

)[q]−n

dx

) q−1
[q] (∫ b

t
kq(x,t)u(x)dx

) 1−{q}
[q]

. (3.2)

Using the Hölder inequality to the first integral of the sum for 0 < n < [q] we have

∫ b

t
k{q}+n(x,t)u(x)dx =

∫ b

t
(kq(x,t)u(x))

n−1+{q}
q−1 (k(x, t)u(x))

[q]−n
q−1 dx

�
(∫ b

t
kq(x,t)u(x)dx

) n−1+{q}
q−1

(∫ b

t
k(x,t)u(x)dx

) [q]−n
q−1

.

Then (3.2) is estimated as follows:

� hq−1

⎛
⎝ [q]

∑
n=0

Cn
[q]

(∫ b

t
kq(x,t)u(x)dx

) n−1+{q}
q−1

(∫ b

t
k(x,t)u(x)dx

) [q]−n
q−1
(∫ t

a
f (s)ds

)n

×
(∫ t

a
k(t,s) f (s)ds

)[q]−n

dx

) q−1
[q] (∫ b

t
kq(x,t)u(x)dx

) 1−{q}
[q]

= hq−1

⎛
⎝ [q]

∑
n=0

Cn
[q]

(∫ b

t
kq(x,t)u(x)dx

) n
q−1
(∫ b

t
k(x,t)u(x)dx

) [q]−n
q−1

×
(∫ t

a
f (s)ds

)n (∫ t

a
k(t,s) f (s)ds

)[q]−n

dx

) q−1
[q]
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= hq−1

((∫ b

t
kq(x,t)u(x)dx

) 1
q−1
(∫ t

a
f (s)ds

)

+
(∫ b

t
k(x,t)u(x)dx

) 1
q−1
(∫ t

a
k(t,s) f (s)ds

))q−1

.

Therefore, we obtain

∫ b

t
k(x,t)u(x)

(∫ t

a
k(x,s) f (s)ds

)q−1

dx

� hq−1

[(∫ b

t
kq(x,t)u(x)dx

) 1
q−1
(∫ t

a
f (s)ds

)

+
(∫ b

t
k(x,t)u(x)dx

) 1
q−1
(∫ t

a
k(t,s) f (s)ds

)]q−1

.

From this we get

J =
∫ b

a
v1−p′(t)

(∫ b

t
k(x,t)u(x)

(∫ t

a
k(x,s) f (s)ds

)q−1

dx

)p′

dt

� h(q−1)p′
∫ b

a
v1−p′(t)

[(∫ b

t
kq(x,t)u(x)dx

) 1
q−1
(∫ t

a
f (s)ds

)

+
(∫ b

t
k(x,t)u(x)dx

) 1
q−1
(∫ t

a
k(t,s) f (s)ds

)](q−1)p′

dt.

Using the Minkowski inequality, we obtain

� h(q−1)p′

⎛
⎝
[∫ b

a
v1−p′(t)

(∫ b

t
kq(x,t)u(x)dx

)p′(∫ t

a
f (s)ds

)(q−1)p′

dt

] 1
(q−1)p′

+

[∫ b

a
v1−p′(t)

(∫ b

t
k(x,t)u(x)dx

)p′(∫ t

a
k(t,s) f (s)ds

)(q−1)p′

dt

] 1
(q−1)p′

⎞
⎠

(q−1)p′

= h(q−1)p′
(

I
1

(q−1)p′
1 + I

1
(q−1)p′
2

)(q−1)p′

.

where

I1 =
∫ b

a
v1−p′(t)

(∫ b

t
kq(x,t)u(x)dx

)p′(∫ t

a
f (s)ds

)(q−1)p′

dt,
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I2 =
∫ b

a
v1−p′(t)

(∫ b

t
k(x,t)u(x)dx

)p′(∫ t

a
k(t,s) f (s)ds

)(q−1)p′

dt.

From this and we have that

I � q‖ f‖p,vJ
1/p′ � q‖ f‖p,vh

q−1
(

I
1

(q−1)p′
1 + I

1
(q−1)p′
2

)q−1

,

i.e.,

I
1

q−1 � hq
1

q−1 ‖ f‖
1

q−1
p,v

(
I

1
(q−1)p′
1 + I

1
(q−1)p′
2

)
.

Further estimate I1 and I2 , separately. To estimate I1 , we use the following Hardy
inequality

I
1

(q−1)p′
1 =

(∫ b

a
v1−p′(t)

(∫ b

t
kq(x,t)u(x)dx

)p′(∫ t

a
f (s)ds

)(q−1)p′

dt

) 1
(q−1)p′

� Cp,(q−1)p′

(∫ b

a
f p(t)v(t)dt

) 1
p

, (3.3)

which holds, since its characteristic condition is satisfied

sup
s∈(a,b)

(∫ b

s
v1−p′(t)

(∫ b

t
kq(x,t)u(x)dx

)p′

dt

) 1
(q−1)p′ (∫ s

a
v1−p′(t)dt

) 1
p′

� sup
s∈(a,b)

⎛
⎝∫ b

s
v1−p′(t)

(
Aq

1

(∫ t

a
v1−p′(x)dx

)− q
p′
)p′

dt

⎞
⎠

1
(q−1)p′ (∫ s

a
v1−p′(t)dt

) 1
p′

� Aq′
1 sup

s∈(a,b)

(∫ b

s
v1−p′(t)

(∫ t

a
v1−p′(x)dx

)−q

dt

) 1
(q−1)p′ (∫ s

a
v1−p′(t)dt

) 1
p′

� Aq′
1

(
1

q−1

) 1
(q−1)p′

< ∞.

For the best constant Cp,(q−1)p′ in (3.3) the following estimate holds:

Cp,(q−1)p′ � ((q−1)p′)
1

(q−1)p′ (p′)
1
p′ Aq′

1

(
1

q−1

) 1
(q−1)p′

= (p′)
q′
p′ Aq′

1 .

Then

I
1

(q−1)p′
1 � (p′)

q′
p′ Aq′

1 ‖ f‖p,v.
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Let us estimate I2 :

I2 =
∫ b

a
v1−p′(t)

(∫ b

t
k(x,t)u(x)dx

)p′(∫ t

a
k(t,s) f (s)ds

)(q−1)p′

dt

=
∫ b

a

(∫ t

a
k(t,s) f (s)ds

)(q−1)p′

d

(
−
∫ b

t

(∫ b

s
k(x,t)u(x)dx

)p′

v1−p′(s)ds

)

=
∫ b

a

(∫ b

t

(∫ b

s
k(x,t)u(x)dx

)p′

v1−p′(s)ds

)
d

(∫ t

a
k(t,s) f (s)ds

)(q−1)p′

using the Minkowski inequality in the inner integral, we get

�
∫ b

a

(∫ b

t
u(x)

(∫ b

s
kp′(x,t)v1−p′(s)ds

) 1
p′

dx

)p′

d

(∫ t

a
k(t,s) f (s)ds

)(q−1)p′

.

We estimate the inner integral of the last inequality in the form

�
∫ b

a

(∫ b

t
u(x)A2

(∫ b

x
u(s)ds

)− 1
q

dx

)p′

d

(∫ t

a
k(t,s) f (s)ds

)(q−1)p′

= (q′)p′Ap′
2

∫ b

a

(∫ b

t
u(x)dx

) p′
q′

d

(∫ t

a
k(t,s) f (s)ds

)(q−1)p′

= (q′)p′Ap′
2

⎛
⎜⎜⎝
⎡
⎣∫ b

a

(∫ b

t
u(x)dx

) p′
q′

d

(∫ t

a
k(t,s) f (s)ds

)(q−1)p′
⎤
⎦

q′
p′
⎞
⎟⎟⎠

p′
q′

� (q′)p′Ap′
2

(∫ b

a
u(x)

(∫ x

a
k(x,s) f (s)ds

)q

dx

) p′
q′

= (q′)p′Ap′
2 I

p′
q′ .

Then

I
1

(q−1)p′
2 � (q′)

1
q−1 A

1
q−1
2 I

1
q .

From the above estimates we have finally obtained this

I
1

q−1 � hq
1

q−1 ‖ f‖
1

q−1
p,v

(
(p′)

q′
p′ Aq′

1 ‖ f‖p,v +(q′)
1

q−1 A
1

q−1
2 I

1
q

)
.

Using I
1
q � ‖H‖‖ f‖p,v we get

I
1

q−1 � hq
1

q−1 ‖ f‖
q

q−1
p,v

(
(p′)

q′
p′ Aq′

1 +(q′)
1

q−1 A
1

q−1
2 ‖H‖

)
.
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(
I

1
q

‖ f‖p,v

)q′

� hq
1

q−1

(
(p′)

q′
p′ Aq′

1 +(q′)
1

q−1 A
1

q−1
2 ‖H‖

)
.

So we have the estimate for the best constant

‖H‖q′ � hq
1

q−1

(
(p′)

q′
p′ Aq′

1 +(q′)
1

q−1 A
1

q−1
2 ‖H‖

)
,

i.e.

‖H‖q′ −hq
1

q−1 (q′)
1

q−1 A
1

q−1 ‖H‖ � hq
1

q−1 (p′)
q′
p′ Aq′ . (3.4)

Consequently, we obtain

‖H‖q′

q
1

q−1 (p′)
q′
p′ Aq′ +q

1
q−1 (q′)

1
q−1 A

1
q−1 ‖H‖

� h.

Let now consider the function

f (x) =
xq′

q
1

q−1 (p′)
q′
p′ Aq′ +q

1
q−1 (q′)

1
q−1 A

1
q−1 x

corresponding to the left hand side of the estimate. It is easy to see that this function is
monotone increasing and continuous in (0,∞) , f (0) = 0 and f (∞) = ∞, which implies
that the equation has exactly one positive solution. If C is a solution of the equation,
i.e.,

Cq′

q
1

q−1 (p′)
q′
p′ Aq′ +q

1
q−1 (q′)

1
q−1 A

1
q−1C

= h

then
‖H‖ � C.

The proof is complete. �

Proof of Theorem 2.5. Substituting C = xhq−1qq′A in (2.2) we obtain the follow-
ing equation

xq′ − x =
(p′)

q′
p′

hq−1q(q′)q′ . (3.5)

It is easy to check that the equation has only one positive solution which belongs to
(1,∞) . We know that in general the equation can not be analytically solved, but from
the other side it is enough to find an upper estimate to the solution. For this aim we
consider the equation

yq′ − y =
e

q′
e

q(q′)q′ , (3.6)
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the right hand side of which is greater than the right side of (3.5), since (p′)
1
p′ � e

1
e for

all p′ > 1. Then the corresponding solutions satisfy

x � y.

Further, we show that the solution of (3.6) lies in the interval (1,e) .
Let us consider the function

f (y) = yq′ − y− e
q′
e

q(q′)q′ (3.7)

for y ∈ (1,∞). It is known that f (1) < 0 and

f (e) = eq′ − e− e
q′
e (q′ −1)
(q′)q′+1

> 0. (3.8)

The positivity of f (e) follows from the properties of the function

ϕ(t) = et − e− e
t
e (t−1)
tt+1 ,

i.e., ϕ(1) = 0 and the function is monotone increasing. Therefore, f (e) = ϕ(q′) > 0
for all q′ > 1.

So, finally we have the existence of the zero point y of the function f in the
interval (1,e) , which implies that the solution x of (3.5) is less than e.

The proof is complete. �
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