ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ РЕСПУБЛИКИ САХА (ЯКУТИЯ) «МИРНИНСКИЙ РЕГИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ КОЛЛЕДЖ» «УДАЧНИНСКОЕ ОТДЕЛЕНИЕ ГОРНОТЕХНИЧЕСКОЙ ПРОМЫШЛЕННОСТИ»

Исследовательская работа по физике

Тема: "ВЛИЯНИЕ НАУШНИКОВ НА СЛУХ ЧЕЛОВЕКА"

Автор: Тимирова Полина Евгеньевна II курс О-23/9у ГАПОУ (РС) Я «МРТК» «УО ГТП» Преподаватель: Кыдрашева Чечек Михайловна

СОДЕРЖАНИЕ

ВВЕДІ	ЕНИЕ	3
осно	ВНАЯ ЧАСТЬ	
ГЛАВА 1. ВЛИЯНИЕ НА СЛУХ ЧЕЛОВЕКА И ФИЗИКА ЗВУКА		4
1.1	История создания наушников	4
1.2	Классификация наушников	4
1.2.1	Классификация наушников по способу подключения	5
1.2.2	Классификация наушников по типу внешней конструкции	5
1.2.3	Классификация по акустическому звуку	7
1.2.4	Классификация наушников по способу крепления	7
1.3	Связь влияния наушников на слух человека с физикой	9
ГЛАВ	А 2. ЭКСПЕРИМЕНТЫ ДЛЯ ИССЛЕДОВАНИЯ СЛУХА И ЕГО	10
влияния на человека		
2.1	Опыт №1 «Измерение остроты слуха»	10
2.2	Опыт №2 «Речевая аудиометрия»	10
2.3	Опыт №3 «Влияние звуков на физиологическое состояние человека»	11
2.4	Решение качественных задач, связанных с наушниками	12
ЗАКЛІ	ЗАКЛЮЧЕНИЕ	
СПИС	СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	

ВВЕДЕНИЕ

Наушники — один из самых популярных аксессуаров. Это удобный и эффективный способ прослушивания музыки или общения с друзьями. На так ли они безобидны?

Проблема: многие люди пользуются наушниками, но не знают, что может их ожидать в дальнейшем.

Объект исследования: наушники.

Предмет исследования: воздействие наушников на организм человека.

Гипотеза: наушники негативно влияют на слух человека.

Цель: изучить влияние наушников на слух человека.

Задачи:

- 1) Выяснить влияние наушников на здоровье человека;
- 2) Измерить остроту слуха;
- 3) Определить изменение работоспособности при прослушивании музыки через наушники;
- 4) Предложить рекомендации для прослушивания музыки через наушники.

Методы исследования:

- Поисковой
- Исследовательский

ГЛАВА 1. Влияние на слух человека и физика звука

1.1 История создания наушников

Самые первые в истории наушники изобрёл Натаниэль Болдуин (рис.1), причём дома на кухне. Собрал он их из разных частей телефона, а изобретение это датируется 1910 годом.

Рисунок 1. Первые в мире наушники

Но первые мониторные наушники были созданы не так давно, в 1958 году. Свою новинку тогда представили Джон Косс и Мартин Лангом, первые наушники были созданы для авиации и очень быстро стали настоящим хитом. С помощью наушников были продемонстрированы возможности первого НІ-FI фонографа, который, к сожалению, не имел особого успеха у публики. Первая модель стереонаушников - прародителей DJ наушников имела название SP-3, выпустив эти наушники, Джон Косс стал основателем индустрии персонального прослушивания музыки. Предприимчивые японцы, быстро осознав большое будущее в направлении диджейских высококачественных наушниках, сделали новшества в самые короткие сроки, разработали копии произведенных наушников Koss, немного их усовершенствовав.

Дело в том, что первые мониторные наушники компании Коѕѕ были большими и неудобными, японцы исправили это в считанные месяцы. В следующие годы наушники постоянно совершенствовались внешне и с технологической точки зрения, но все еще оставались громоздкими и неудобными. Более приятный «фасон» они обрели с появлением маленького плеера в 1980 году. Компании разработчики приложили все усилия в создании «уличного» варианта наушников, результат превзошел ожидания — маленькие, удобные наушники с приятным дизайном стали мечтой каждого подростка. 90 годы были ознаменованы появлением беспроводных радио-наушников, это дало новые возможности, теперь человек получил «лучшие наушники для ди-джея», он не был привязан к аудиосистеме, он мог свободно перемещаться по комнате или квартире наслаждаясь любимыми мелодиями. Сейчас трудно найти сферу человеческой деятельности, где не нашлось бы применения наушникам. Наиболее важная роль отводится им в процессе звукозаписи.

1.2 Классификация наушников

1.2.1 Классификация наушников по способу подключения

По типу передачи электрического сигнала выделяют проводные и беспроводные наушники. Проводной (рис.2) — это классический вариант. Здесь провод может выходить либо из обоих наушников, либо из одного (в этом случае второй провод обычно проходит через все оголовье и на выходе примыкает к первому). Выбрать проводные наушники не составляет никакого труда, их ассортимент огромен.

В беспроводных наушниках передача сигнала осуществляется посредством инфракрасного канала, радиоканала или цифрового канала. В них качество звука значительно хуже, чем в проводных. В беспроводных наушниках, в сравнении с их проводными аналогами, меньшие динамический и частотный диапазоны, больше звуковых искажений и шумов. К тому же они заметно тяжелее, так как в беспроводных моделях имеется встроенный аккумулятор для питания приемника звука (рис.3).

Рисунок 2. Проводные наушники

Рисунок 3. Беспроводные наушники

1.2.2 Классификация наушников по типу внешней конструкции

По типу внешней конструкции наушники могут быть накладными, вставными или мониторными.

Накладные наушники хорошо прилегают к уху, динамик находится вне ушной раковины. (рис.4)

Рисунок 4. Накладные наушники

Вставные наушники (наушники-капельки) размещаются в слуховом канале уха. Такие наушники чаще покупают для использования на улице, в транспорте, так как их в любой момент можно без труда спрятать, не мешают носить головной убор (рис.5).

Рисунок 5. Вставные наушники

Мониторные наушники полностью обхватывают ухо, предназначены для очень точного воспроизведения звука. В этих наушниках качество звука близится к уровню профессиональных аудиосистем. В отличие от других типов наушников, звук из мониторных наушников попадает в ушную раковину и не утомляет слух. Их принято считать самыми комфортными. Комфорт в мониторных наушниках достигается благодаря амбушюрам, валикам, охватывающим ухо (такие валики делают из кожзаменителя, мягкой ткани или вискозы) (рис.6).

Рисунок 6. Мониторные наушники

1.2.3 Классификация по акустическому звуку

Закрытые наушники полностью способны изолировать уши от внешних шумов. Конструкция наушников этого типа такова, что динамик полностью закрыт. Закрытыми наушниками удобно пользоваться в шумных помещениях, в транспорте. Они защищают уши от посторонних звуков, в то же время, музыка, льющаяся из наушников, не будет мешать людям, которые вас окружают.

Недостатком закрытых наушников является искажение звука из-за резонанса звуковых волн с задней стенкой корпуса наушников. К тому же, абсолютная изоляция от звуков внешнего мира опасна на улицах городов, заполненных транспортом. Если же в

корпусах наушников имеются прорези и всевозможные щели, за счет чего отсутствует полная звукоизоляция, то такое аудио-оборудование относят к наушникам открытого типа. За счет наличия отверстий в задних стенках, открытые наушники воспроизводят меньшее количество паразитных волн, поэтому звук в них более мягок и естественен. В открытых наушниках пропадает эффект «бочки».

1.2.4 Классификация наушников по способу крепления

По способу крепления наушники разделяют на такие, которые крепятся с помощью:

• специальной дужки, вертикально соединяющей правую и левую чашечки наушников - классическое крепление (рис.7);

Рисунок 7. Наушники со специальными душками

• затылочной дужки, которая соединяет наушники между собой, огибая затылочную часть (рис.8);

Рисунок 9. С затылочными душками

• специально предусмотренных клипс или заушин (рис. 10);

Рисунок 10. Клипсы

• вовсе без крепления - наушники держатся в ушах за счет самих амбушюр, которые вставляются непосредственно в слуховой проход (рис.11);

Рисунок 11. Наушники без крепления

1.3 Связь влияния наушников на слух человека с физикой

Исследование влияния наушников на слух человека тесно связано с физическими принципами, лежащими в основе звуковых волн и их взаимодействия с человеческим ухом. Рассмотрим несколько ключевых аспектов этой связи:

1. Звуковые волны и давление звука

Звук представляет собой механическую волну, которая распространяется через среду (воздух, вода и т.д.) в виде колебаний частиц. Наушники работают, генерируя звуковые волны, которые затем улавливаются нашим слуховым аппаратом. Давление звука (измеряемое в децибелах, дБ) определяется амплитудой звуковой волны: чем больше амплитуда, тем выше давление и громкость звука. При длительном воздействии звуков с высоким давлением звука могут повреждаться клетки внутреннего уха, что ведет к ухудшению слуха.

2. Частота звука

Наушники производят звуки различной частоты (измеряемой в герцах, Гц). Человеческое ухо воспринимает звук в диапазоне от 20 Гц до 20 кГц. Звуки высокой частоты обычно менее опасны, чем звуки низкой частоты, поскольку последние несут больше энергии и могут глубже проникать в структуры уха, вызывая механическое повреждение слуховых клеток.

3. Конструктивные особенности наушников

Тип наушников также определяет характер воздействия звука на ухо. Вкладыши, которые вставляются прямо в ушной канал, могут создавать более высокое звуковое давление по сравнению с накладными или полноразмерными наушниками, что повышает риск повреждения слуха.

4. Сопротивление (импеданс)

Здесь важно соответствие значения модуля полного электрического сопротивления наушников и выходного сопротивления источника звука. Большинство наушников рассчитано на сопротивление в 32 Ома. Наушники с сопротивлением в 16 Ом имеют повышенную излучаемую акустическую мощность. Для уменьшения акустической мощности (что увеличивает безопасность работы в наушниках) профессионалы используют наушники с максимальным значением сопротивления.

ГЛАВА 2. Эксперименты для исследования слуха и его влияния на человека 2.1 Измерение остроты слуха

Оцениваем остроту слуха с использованием механических часов. Для этого подносим к уху механические часы с секундной стрелкой и измеряем линейкой, на каком расстоянии от уха исследуемый слышит звук секундной стрелки(рис.12,13). Оценка результатов: нормальным можно считать слух, когда тиканье ручных часов среднего размера слышно на расстоянии 10-20 см. от уха испытуемого. Если же это расстояние меньше, то острота слуха испытуемого снижена. Сначала измеряем до прослушивания музыки (рис.12), потом после (рис.13). В эксперименте возьмем вставные наушники.

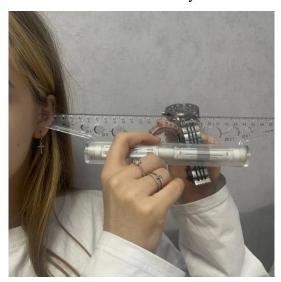


Рисунок 12. До прослушивания музыки. 20см

Рисунок 13. После. 17см

Вывод: после прослушивания музыки через наушники острота слуха снизилась.

2.2 Речевая аудиометрия

На некотором расстоянии стоит человек, при этом запрещается смотреть в его сторону. Во время исследования каждое ухо проверяют по отдельности, для чего противоположное ухо «выключается» путём введения трещётки Барани в наружный слуховой проход (в нашем исследовании слуховой проход плотно закрывался рукой)(рис.14,15). Затем человек произносит цифры нормальным голосом и шепотом. Слух считается нормальным, если шепотная речь различается на расстоянии 6-7 м. Чтобы успешно воспринимать звук, ухо должно адекватно проводить и обрабатывать звуковые волны. Проверка каждого уха по отдельности позволяет оценить индивидуальную работоспособность слуховых механизмов и исключить возможные проблемы, такие как блокировка звуковых сигналов или ухудшение восприятия. Эксперимент провелся на собственном опыте, так как слушаю музыку более 3 часов в день в вставных наушниках.

Рисунок 14. Проверка правого уха

Рисунок 15. Проверка левого уха

Вывод: в данном эксперименте на расстоянии 5 метров оба уха могут услышать, как и нормальный голос, так и шепот. Все хорошо.

2.3 Влияние звуков на физиологическое состояние человека

Для проверки влияния музыки на работоспособность проводится миниэксперимент. Решаем несколько несложных заданий (рис.16). Затем надевают наушники и решают задания аналогичного характера, но под сопровождение музыки(рис.17). В эксперименте воспользуемся вставными наушниками.

Рисунок 16. Решаем задачи без наушников

Рисунок 17. За какое время закончили

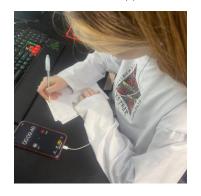


Рисунок 18. Решаем задачи с наушниками

Рисунок 19. За какое время закончили

Вывод: при прослушивании музыки через наушники незначительно произошло ухудшение работоспособности (рис.18,19), на выполнение заданий потребовалось чуть больше времени. Ошибок нигде не допущено.

2.4 Решение качественных задач, связанных с наушниками

Задача 1) Звуковые волны

Условие: В воздухе при температуре 25°С скорость звука составляет 346 м/с. Определите длину волны звука частотой 500 Гц в воздухе при данной температуре.

Решение:
$$\lambda = \frac{v}{f} = \frac{346 \text{ м/c}}{500 \text{ }\Gamma \text{ц}} = 0,692 \text{ м}$$

Вывод: длина волны звука частотой 500 Гц при температуре 25°C в воздухе равна 0,692 метра.

Задача 2) Сопротивление наушников

Условие: Наушники имеют сопротивление 32 Ом. Если к ним подключен аудиоплеер с выходным напряжением 1 В, то какое количество силы тока будет проводить через эти наушники?

Решение: используем закон Ома $I = \frac{U}{R} = \frac{1 \text{ B}}{32 \text{ Ом}} = 31.25 \text{ мA}$

Вывод: через наушники пройдет ток 31.25 мА.

Задача 3) Частота звука

Условие: Наушники воспроизводят звук с длиной волны 1.5 метра. Какова частота этого звука?

Решение: используем формулу для частоты $f = \frac{c}{\lambda} = \frac{343 \text{ м/c}}{1.5 \text{ м}} = 228.67 \text{ Гц.}$

Вывод: частота звука, воспроизводимого наушниками, составляет примерно 228.67 Герц.

ЗАКЛЮЧЕНИЕ

Проведённое исследование позволяет сделать вывод о том, что динамические наушники за историю своего развития сильно изменились.

Классифицируются наушники по разным критериям, но пользователю больше знакома классификация по типу конструкции: мониторные, накладные,

Вставные, внутриканальные. Проанализировав различные интернет-источники, проведя измерение остроты слуха и работоспособности при прослушивании музыки через наушники, можно сделать следующие выводы:

• наиболее опасными являются вставные и внутриканальные

Наушники, что подтверждает гипотезу нашей работы.

•наушники наносят вред здоровью человека при неправильном их

Использовании. Человек, слушающий громкую музыку, может не заметить

Движущийся транспорт и создать аварийную ситуацию на дороге.

• необходимо провести разъяснительную работу среди учащихся и их родителей по данной теме.

И хотя на сегодняшний день нет однозначных данных, указывающих на необратимые изменения слуха при прослушивании музыки через наушники, считаем разумным не пренебрегать возможностью уберечь свой слух от звуковых ударов и советуем придерживаться следующих рекомендаций:

- 1. Лучше всего использовать для прослушивания музыки мониторные или накладные наушники.
- 2. Не отключать автоматику безопасности при прослушивании музыки.
- 3. Соблюдать правило «60-60». Это значит, что нельзя слушать музыку на громкости более 60 % и дольше 60 минут подряд. Если музыка наушников слышна окружающим, то это уже вредно для слуха того, кто слушает музыку на такой громкости.
- 4. Давайте своим ушам отдыхать; послушайте тишину.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1) Физика. Базовый уровень. 11 класс. Учебник Пурышева Н.С. Важеевская Н.Е. Исаев Д.А. Издательство "Дрофа" Линия УМК Пурышевой. Физика (10-11)
- 2) https://dzen.ru/a/Y-HeqXixlAYjCNXL
- 3) https://www.texnoset.ru/blogs/blog/vidy-naushnikov-i-ih-podrobnaya-klassifikaciya