Использование методов проблемного обучения на уроках химии

Автор: Ирина Юрьевна Волкова
Широкие возможности для использования методов проблемного обучения представляют курсы неорганической и органической химии, построенные на идеях зависимости свойств веществ от их строения. Поэтому изучение всего основного содержания предмета можно построить как систему познавательных проблем и способов их решения, но масштабы проблем будут различны. Одни из них широкого плана, и решению их подчиняется изучение отдельных тем или целых разделов химии, другие более узкие, охватывающие содержание нескольких уроков или одного, являющиеся ступенями к решению более общих проблем.[2]
Использование методов проблемного обучения следует начинать уже на первом году обучения химии, то есть с восьмого класса. С первых уроков учащиеся знакомятся с основными химическими понятиями и законами, расширяют знания о строении веществ и их свойствах.[3] Таким образом, оперируя основными положениями «Атомно-молекулярного учения», учащиеся достаточно активно участвуют в решении проблемных вопросов и задач при изучении основных законов химии: сохранения массы веществ, постоянства состава вещества и других.[1]
Например, урок в 8 классе «Закон сохранения массы веществ». Проблемная задача ставится в форме демонстрационного опыта: в замкнутой системе взвешиваются вещества, вступающие в реакцию, растворы сульфата меди (II) (CuSO4) и гидроксида калия (m1) (KOH) и образующиеся в результате реакции вещества, гидроксид меди (II) (Cu(OH)2) и раствор сульфата калия (m2) (K2SO4); по одному из признаков протекания реакций учащиеся убеждаются в том, что химическая реакция прошла — выпал осадок голубого цвета. Результаты взвешивания веществ до и после реакции подтверждают закон сохранения массы веществ. Учащиеся стоят перед решением проблемной задачи: почему m1=m2? Благодаря актуализации ранее полученных знаний о строении веществ, учащиеся сравнительно легко приходят к следующему выводу: m1=m2, так как атомы и их количество в результате химических превращений не изменяются, а только соединяются по-другому с образованием новых веществ.
Очень часто для решения проблемных ситуаций на уроке требуется от учащихся привлечения не только ранее изученных внутрипредметных связей, но и межпредметных связей (природоведение, биология, физика и др.).[3] Например, уроки по круговороту веществ в природе в 8 и 9 классах. При изучении вопроса о круговороте кислорода в природе (8 класс) я ставлю проблемный вопрос: «Почему запасы атмосферного кислорода остаются на постоянном уровне (21% по объёму), не смотря на огромный расход этого вещества в различных процессах (дыхание, горение)? Используя сведения о кислороде, полученные на уроках биологии и химии, учащиеся приходят к выводу о том, что постоянное содержание кислорода в атмосфере является следствием равновесия двух процессов противоположных по действию, так как продукты одного процесса служат исходными веществами для другого, это окисление (дыхание, горение) и фотосинтез.
На уроках по изучению свойств оксидов, оснований, кислот и солей целесообразней ставить проблему перед учащимися в ходе выполнения исследовательских, лабораторных задач с последующим обобщением знаний по этим темам.[5] Так, например, на уроке «Соли аммония» (9 класс) мною предлагается задания по ознакомлению со свойствами солей аммония:
1. Изучите внешний вид и растворимость солей аммония в воде — NH4Cl
(1 вариант), (NH4)2SO4 (2 вариант).
При обсуждении результатов опытов делается вывод об общих физических свойствах солей аммония.
2. Составьте уравнения диссоциации этих солей.
Следует вывод: на основании анализа уравнений диссоциации, о схожем механизме с другими солями и возможности проявления общих с ними свойств.
3. Исследуйте, как эти соли относятся к действию щелочей. К растворам солей добавьте 3 — 4 капли раствора гидроксида натрия, встряхните и определите запах.
Обсуждение результатов опытов позволяет сделать выводы: об общем признаке протекания реакций между солями аммония и щелочами (появление запаха аммиака); о возможном использовании данной реакции для качественного определения катионов аммония.
4. Составьте молекулярное и ионные уравнения данной реакции.
Исходя из результатов своей работы, предлагаю более широко применять методы проблемного обучения при изучении школьного курса химии:
-чтобы добиться большей эффективности их использования в старших классах, вводить уже на первом году обучения (8 класс) при изучении общих законов химии, применения веществ, генетической связи между различными классами неорганических соединений;
-изучение тем, связанных с рассмотрением химических производств (9, 10 класс), строить на использовании методов проблемного обучения, так как именно они способствуют наибольшей актуализации знаний учащихся об основных закономерностях протекания химических реакций (химического равновесия, кинетики химических реакций), что позволяет самим учащимся найти оптимальное решение, аргументировать его, обобщить изученные ранее закономерности управления реакциями и применить их к новым процессам;
-при выяснении строения веществ и их свойств (9-11 классы), ставить задачи проблемно-поискового характера, решая которые, учащиеся используют и закрепляют знания об электронном строении молекул, о функциональных группах, химических свойствах веществ, отрабатывают навыки практического осуществления реакций, подтверждающих состав и свойства данных веществ, что позволяет глубже понять взаимосвязь состава и свойств различных классов органических и неорганических соединений.[4]

Использование методов проблемного обучения на уроках химии (1).docx

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *